Abstract

Summary We establish an approximation theory for Pearson’s chi-squared statistics in situations where the number of cells is large, by using a high-dimensional central limit theorem for quadratic forms of random vectors. Our high-dimensional central limit theorem is proved under Lyapunov-type conditions that involve a delicate interplay between the dimension, the sample size, and the moment conditions. We propose a modified chi-squared statistic and introduce an adjusted degrees of freedom. A simulation study shows that the modified statistic outperforms Pearson’s chi-squared statistic in terms of both size accuracy and power. Our procedure is applied to the construction of a goodness-of-fit test for Rutherford’s alpha-particle data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.