Abstract

This paper documents the preparation of three biopolymer films: 1) pearl millet starch (PMS) films, 2) PMS films reinforced with cellulose nanocrystals (CNCs), and 3) PMS films reinforced with CNCs stabilized Pickering emulsion of clove bud oil (CBO) and a comparison of their mechanical and water barrier properties and biodegradation behavior in soil. Reinforcing PMS films with Kudzu CNCs/CBO significantly increased tensile strength (from 3.9 to 16.7 MPa) and Young's modulus (from 90 to 376 MPa) but reduced the elongation (54.2 to 30 %) at the break of nanocomposite films. Also, the water vapor permeability of nanocomposite films decreased (from 9.60 to 7.25 × 10−10gm−1s− 1Pa−1) with the incorporation of Kudzu CNCs/CBO. The fastest biodegradation was observed for PMS films (98% in 15 days), followed by PMS films reinforced with Kudzu CNCs (96% in 18 days), followed by PMS films reinforced with Kudzu CNCs stabilized Pickering emulsions (94% in 21 days). The morphological analysis found hyphae-like structure formation due to microbial action, which increased over time. In general, all three biopolymer films showed good biodegradation behavior, and they all degraded between 15 and 21 days, suggesting that starch-based films reinforced with Kudzu CNCs provide a technique for the production of biodegradable packaging material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.