Abstract

Ion mobility spectrometry with pre-separation by multi-capillary columns (MCC/IMS) has become an established inexpensive, non-invasive bioanalytics technology for detecting volatile organic compounds (VOCs) with various metabolomics applications in medical research. To pave the way for this technology towards daily usage in medical practice, different steps still have to be taken. With respect to modern biomarker research, one of the most important tasks is the automatic classification of patient-specific data sets into different groups, healthy or not, for instance. Although sophisticated machine learning methods exist, an inevitable preprocessing step is reliable and robust peak detection without manual intervention. In this work we evaluate four state-of-the-art approaches for automated IMS-based peak detection: local maxima search, watershed transformation with IPHEx, region-merging with VisualNow, and peak model estimation (PME). We manually generated a gold standard with the aid of a domain expert (manual) and compare the performance of the four peak calling methods with respect to two distinct criteria. We first utilize established machine learning methods and systematically study their classification performance based on the four peak detectors’ results. Second, we investigate the classification variance and robustness regarding perturbation and overfitting. Our main finding is that the power of the classification accuracy is almost equally good for all methods, the manually created gold standard as well as the four automatic peak finding methods. In addition, we note that all tools, manual and automatic, are similarly robust against perturbations. However, the classification performance is more robust against overfitting when using the PME as peak calling preprocessor. In summary, we conclude that all methods, though small differences exist, are largely reliable and enable a wide spectrum of real-world biomedical applications.

Highlights

  • Over the last decade the focus in ion mobility spectrometry (IMS) research has widened, including biotechnological and medical applications, such as patient breath analysis and monitoring [1], identification of bacterial strains and fungi [2,3], cancer sub-typing, and skin volatile detection [4], just to name a few

  • Since we are given with multiple mobility spectrometry with pre-separation by multi-capillary columns (MCC/IMS) measurements, we extend this peak description by the measurement index i resulting in P = (i, r, t, s)

  • We evaluate five methods for peak detection: (1) manual peak detection by an expert, which we will refer to as the “gold standard”; (2) an automated local maxima search (LMS); automated peak detection in both (3) IPHEx and (4) VisualNow; and (5) a peak model estimation approach

Read more

Summary

Introduction

Over the last decade the focus in ion mobility spectrometry (IMS) research has widened, including biotechnological and medical applications, such as patient breath analysis and monitoring [1], identification of bacterial strains and fungi [2,3], cancer sub-typing, and skin volatile detection [4], just to name a few. Note that the patient data is sensitive and confidential such that we cannot present more details here. Our goal in this scenario is a classifier distinguishing “healthy” from “not healthy” patients, which shall be a support for a physician by proposing the most likely patients condition. Since the daily increasing number of measurements, each with several dozens of potential peaks, exceeds the ability of a human to find a pattern within the data, the necessity of an automated data analysis and classification emerges

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.