Abstract

Automatic vessel segmentation is a critical area of research in medical image analysis, as it can greatly assist doctors in accurately and efficiently diagnosing vascular diseases. However, accurately extracting the complete vessel structure from images remains a challenge due to issues such as uneven contrast and background noise. Existing methods primarily focus on segmenting individual pixels and often fail to consider vessel features and morphology. As a result, these methods often produce fragmented results and misidentify vessel-like background noise, leading to missing and outlier points in the overall segmentation. To address these issues, this paper proposes a novel approach called the progressive edge information aggregation network for vessel segmentation (PEA-Net). The proposed method consists of several key components. First, a dual-stream receptive field encoder (DRE) is introduced to preserve fine structural features and mitigate false positive predictions caused by background noise. This is achieved by combining vessel morphological features obtained from different receptive field sizes. Second, a progressive complementary fusion (PCF) module is designed to enhance fine vessel detection and improve connectivity. This module complements the decoding path by combining features from previous iterations and the DRE, incorporating nonsalient information. Additionally, segmentation-edge decoupling enhancement (SDE) modules are employed as decoders to integrate upsampling features with nonsalient information provided by the PCF. This integration enhances both edge and segmentation information. The features in the skip connection and decoding path are iteratively updated to progressively aggregate fine structure information, thereby optimizing segmentation results and reducing topological disconnections. Experimental results on multiple datasets demonstrate that the proposed PEA-Net model and strategy achieve optimal performance in both pixel-level and topology-level metrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.