Abstract
We have developed a novel scanning protocol for a life-sized human phantom model using handheld three-dimensional (3D) surface acquisition devices. This technology will be utilized to develop light fluence modeling of the internal pleural cavity space during Photodynamic Therapy (PDT) of malignant mesothelioma. The external aspect of the chest cavity phantom was prefabricated of a hardened synthetic polymer resembling ordinary human anatomy (pleural cavity space) and the internal aspect remained hollow without any characterizations. Both surfaces were layered with non-reflective adhesive paper to create non-uniformed surface topographies. These surface characteristics were established in randomized X-Y-Z coordinates ranging in dimensions from 1-15mm. This protocol utilized the handheld Occipital Scanner and the MEDIT i700. The Occipital device required a minimum scanner-to-surface distance of 24cm and the MEDIT device 1cm respectively. The external and internal aspects of the phantom model were successfully scanned acquiring digital measurements in actual value and converted into a digital image file. The initial surface rendering was acquired by the Occipital device and applied with proprietary software to guide the MEDIT device to fill voided areas. This protocol is accompanied by a visualization tool that allows for real-time inspection of surface acquisition in 2D and 3D. This scanning protocol can be utilized to scan the pleural cavity for real-time guidance for light fluence modeling during PDT, which will be expanded to ongoing clinical trials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of SPIE--the International Society for Optical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.