Abstract

Initial reversibility and excellent capacity retention are the key requirements for the success of high-capacity electrode materials in high-performance Li-ion batteries and pose a number of challenges to development. Silicon has been regarded as a promising anode material because of its outstanding theoretical capacity. However, it suffers from colossal volume change and continuous formation of unstable solid electrolyte interphases during lithiation/delithiation processes, which eventually result in low initial Coulombic efficiency (ICE) and severe capacity decay. To circumvent these challenges, a new sandwich Si anode (SiOx /Si/SiOx ) free from prelithiation is designed and fabricated using a combination of P-doping and SiOx layers. This new anode exhibits high conductivity and specific capacity compared to other Si thin-film electrodes. Cells with SiOx /Si/SiOx anodes deliver the highest presently known ICE value among Si thin-film anodes of 90.4% with a charge capacity of 3534mA h g-1 . In addition, the SiOx layer has sufficient mechanical stability to accommodate the large volume change of the intervening Si layer during charge-discharge cycling, exhibiting high potential for practical applications of Si thin-film anodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.