Abstract

Capacitative Ca(2+) entry (CCE) through store-operated Ca(2+) (SOC) channels plays an important role in returning Ca(2+) to the sarcoplasmic reticulum (SR) and regulating cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)). A rise in [Ca(2+)](cyt) and sufficient Ca(2+) in the SR are required for pulmonary artery smooth muscle cell (PASMC) proliferation. We tested the hypothesis that platelet-derived growth factor (PDGF)-mediated PASMC growth involves upregulation of c-Jun and TRPC6, a transient receptor potential cation channel. In rat PASMC, PDGF (10 ng/ml for 0.5-48 h) phosphorylated signal transducer and activator of transcription (STAT3), increased mRNA and protein levels of c-Jun, and stimulated cell proliferation. PDGF treatment also upregulated TRPC6 expression and augmented CCE, elicited by passive depletion of Ca(2+) from the SR using cyclopiazonic acid. Furthermore, overexpression of c-Jun stimulated TRPC6 expression and CCE amplitude in PASMC. Downregulation of TRPC6 using an antisense oligonucleotide specifically for human TRPC6 decreased CCE and inhibited PDGF-mediated PASMC proliferation. These results suggest that PDGF-mediated PASMC proliferation is associated with c-Jun/STAT3-induced upregulation of TRPC6 expression. The resultant increase in CCE raises [Ca(2+)](cyt), facilitates return of Ca(2+) to the SR, and enhances PASMC growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.