Abstract

A transported probability density function (PDF) method is developed for pulverized coal combustion. Two separate PDF transport equations, one for the gas phase (joint velocity-composition PDF) and one for the coal particle phase, are solved by means of stochastic Lagrangian methods. The gas composition is described by two mixture fractions (one that tracks the devolatilization products and one that tracks the char combustion products) and the total specific enthalpy. Two different models are proposed for the unclosed terms in the gas-phase PDF transport equation due to the mass transfer from the solid to the gas phase through devolatilization and char combustion. To close the transport equation for the coal particle PDF, the gas phase velocity and composition sampled along the coal particle trajectories are modeled. Radiative heat transfer is modeled by a discrete transfer method (DTM) to solve for the Reynolds averaged radiative heat transfer equation for a gray absorbing emitting and scattering gas–particle mixture. The turbulence–radiation interaction of the emission is given in closed form in the proposed two-phase PDF approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.