Abstract

Dengue virus (DENV) infection is mediated by the interaction between the virus envelope protein and cellular receptors of the host cells. In this study, we designed peptides to inhibit protein-protein interaction between dengue virus and CD44 receptor, which is one of the receptors used by DENV for entry. In silico model complexes were designed between domain III of the viral envelope protein of dengue virus 2 and the domain of human CD44 receptor using ClusPro 2.0, (https://cluspro.bu.edu/login.php), and inhibition peptides were designed with Rosetta Online-Server(http://rosie.rosettacommons.org/peptiderive). We identified one linear antiviral peptide of 18 amino acids derived from the human CD44 receptor, PD1 CD44. It did not show hemolysis or toxicity in HepG2 or BHK cell lines, nor did it stimulate the release of IL-1β, IL-6, TNF-α, and IFN-γ, below 100 µM. It had an IC50 of 13.8 µM and maximum effective dose of 54.9 µM evaluated in BHK cells. The decrease in plaque-forming units/mL for DENV1, DENV2, DENV3, and DENV4 was 99.60%, 99.40%, 97.80%, and 70.50%, respectively, and similar results were obtained by RT-qPCR. Non-structural protein 1 release was decreased in pre- and co-treatment but not in post-treatment. Competition assays between the DN59 peptide, envelope protein, and the fragment of domain III "MDKLQLKGMSYSMCTGKF" of the viral envelope of DENV2 and PD1 CD44 showed that our peptide lost its antiviral activity. We demonstrated that our peptide decreased endosome formation, and we propose that it binds to the envelope protein of DENV, inhibiting viral invasion/fusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.