Abstract

Fused porphyrinoids have received increasing interest in light of their extended conjugation and unique coordination behavior. On the basis of our previously reported multiply fused pentaphyrin isomers 1 and 2, a novel isomer 3 has been synthesized in this work. 3 possesses a hexacyclic fused moiety with a nearly coplanar CCNN cavity involving an inverted pyrrole, which is slightly different from the CNNN ones of 1 and 2 involving an N-confused pyrrole. 1-3 possess cavities with three depronatable protons and thus they all can generate Cu(III) complexes. However, only 3Cu is stable under ambient conditions. On the other hand, 3 remains intact upon treatment with Pd(II) ions, while 1 and 2 could undergo structural rearrangement to accommodate Pd(II), affording 1Pd and 2Pd accompanied by the formation of a lactone ring and the addition of a methoxy group, respectively. Compared with the free bases, the complexes show distinct aromaticity and more intense near-infrared (NIR) absorption up to ca. 1600, 1170, and 1500 nm, respectively. The results indicate that the subtle modification of the linking modes between the pyrrolic units in the fused pentaphyrinoids is effective in modulating the coordination behavior for synthesizing complexes with tunable aromaticity and NIR absorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.