Abstract

Formation of a heterochromatin-like structure results in transcriptional silencing at the HM mating-type loci and telomeres in Saccharomyces cerevisiae. Once formed, such epigenetically determined structures are inherited for many mitotic divisions. Here we show that mutations in the proliferating cell nuclear antigen (PCNA), an essential component at the DNA replication fork, reduced repression of genes near a telomere and at the silent mating-typelocus, HMR. The pol30-8 mutant displayed coexistence of both repressed (pink) and de-repressed (white) cells within a single colony when assayed with the ADE2 gene inserted at HMR. Unlike pol30-8, the pol30-6 and pol30-79 mutants partially reduced gene silencing at telomeres and the HMR and synergistically decreased silencing in cells lacking chromatin assembly factor 1 (CAF-1). All silencing defective mutants showed reduced binding to CAF-1 in vitro and altered chromatin association of the CAF-1 large subunit in vivo. Thus, PCNA participates in inheritance of both DNA and epigenetic chromatin structures during the S phase of the cell cycle, the latter by at least two mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.