Abstract

We propose PCAM , a Probabilistic Cyber-Alert Management framework, that enables chief information security officers to better manage cyber-alerts. Workers in Cyber Security Operation Centers usually work in 8- or 12-hour shifts. Before a shift, PCAM analyzes data about all past alerts and true alerts during the shift time-frame to schedule a given set of analysts in accordance with workplace constraints so that the expected number of “uncovered” true alerts (i.e., true alerts not shown to an analyst) is minimized. PCAM achieves this by formulating the problem as a bi-level non-linear optimization problem and then shows how to linearize and solve this complex problem. We have tested PCAM extensively. Using statistics derived from 44 days of real-world alert data, we are able to minimize the expected number of true alerts that are not manually examined by a team consisting of junior, senior, and principal analysts. We are also able to identify the optimal mix of junior, senior, and principal analysts needed during both day and night shifts given a budget, outperforming some reasonable baselines. We tested PCAM ’s proposed schedule (from statistics on 44 days) on a further 6 days of data, using an off-the-shelf false alarm classifier to predict which alerts are real and which ones are false. Moreover, we show experimentally that PCAM is robust to various kinds of errors in the statistics used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call