Abstract

BACKGROUND Embryo implantation requires a healthy embryo and a receptive uterus. Uterine incompetence contributes significantly to implantation failure and infertility. To date, there are no reliable biochemical methods that can determine whether the uterus is receptive. Proprotein convertase 5/6 (PC6) is tightly regulated in the uterus and critical for receptivity and implantation; its secretory nature predicts PC6 to be secreted into the uterine cavity. The present study examines whether PC6 is detectable in uterine lavage and whether there is any correlation between secreted PC6 levels and uterine receptivity. METHODS Western blotting determined the presence of PC6 protein in uterine lavage. A sensitive and high-throughput activity assay was established and validated. This assay was applied to 103 lavages collected from different phases of the menstrual cycle from women with proven fertility or unexplained infertility. RESULTS Uterine lavage contained PC6 protein with levels paralleling enzymatic activity. PC6 levels were significantly higher in the receptive than in the non-receptive phase in fertile women, and the putative receptive phase levels in a subgroup of women with unexplained infertility were significantly lower than in the fertile counterparts. CONCLUSIONS PC6 levels in uterine lavage are significantly elevated in the luteal phase of fertile women and markedly reduced in a subgroup of women with unexplained infertility. Uterine fluid is a valuable source of material to evaluate uterine function. Detection of PC6 in uterine fluid may lead to the development of a rapid and relatively non-surgical assessment of uterine receptivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.