Abstract

It is well known that the formal Aharonov–Bohm Hamiltonian operator, describing the interaction of a charged particle with a magnetic vortex, has a four-parameter family of self-adjoint extensions, which reduces to a two-parameter family if one requires that the Hamiltonian commutes with the angular momentum operator. The question we study here is which of these self-adjoint extensions can considered as limits of regularized Aharonov–Bohm Hamiltonians, that is Pauli Hamiltonians in which the magnetic field corresponds to a flux tube of nonzero diameter. We show that not all the self-adjoint extensions in this two-parameter family can be obtained by these approximations, but only two one-parameter subfamilies. In these two cases we can choose the gyromagnetic ratio in the approximating Pauli Hamiltonian in such a way that we get convergence in the norm resolvent sense to the corresponding self-adjoint extension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.