Abstract
BackgroundEvolution of reproductive isolation is an important process, generating biodiversity and driving speciation. To better understand this process, it is necessary to investigate factors underlying reproductive isolation through various approaches but also in various taxa. Previous studies, mainly focusing on diploid animals, supported the prevalent view that reproductive barriers evolve gradually as a by-product of genetic changes accumulated by natural selection by showing a positive relationship between the degree of reproductive isolation and genetic distance. Haplodiploid animals are expected to generate additional insight into speciation, but few studies investigated the prevalent view in haplodiploid animals. In this study, we investigate whether the relationship also holds in a haplodiploid spider mite, Amphitetranychus viennensis (Zacher).ResultsWe sampled seven populations of the mite in the Palaearctic region, measured their genetic distance (mtDNA) and carried out cross experiments with all combinations. We analyzed how lack of fertilization rate (as measure of prezygotic isolation) as well as hybrid inviability and hybrid sterility (as measures of postzygotic isolation) varies with genetic distance. We found that the degree of reproductive isolation varies among cross combinations, and that all three measures of reproductive isolation have a positive relationship with genetic distance. Based on the mtDNA marker, lack of fertilization rate, hybrid female inviability and hybrid female sterility were estimated to be nearly complete (99.0–99.9% barrier) at genetic distances of 0.475–0.657, 0.150–0.209 and 0.145–0.210, respectively. Besides, we found asymmetries in reproductive isolation.ConclusionsThe prevalent view on the evolution of reproductive barriers is supported in the haplodiploid spider mite we studied here. According to the estimated minimum genetic distance for total reproductive isolation in parent population crosses in this study and previous work, a genetic distance of 0.15–0.21 in mtDNA (COI) appears required for speciation in spider mites. Variations and asymmetries in the degree of reproductive isolation highlight the importance of reinforcement of prezygotic reproductive isolation through incompatibility and the importance of cytonuclear interactions for reproductive isolation in haplodiploid spider mites.
Highlights
Evolution of reproductive isolation is an important process, generating biodiversity and driving speciation
A maximum likelihood (ML) tree of A. viennensis populations based on the c oxidase subunit I gene (COI) sequences (Fig. 1) showed that A. viennensis consists of two clades: one comprises the populations from France (F) and Turkey (T) and the other comprises the other five populations
Endosymbiont infections No infection with Wolbachia, Cardinium, Spiroplasma or Rickettsia was detected in any of the seven populations of A. viennensis used in the experiments
Summary
Evolution of reproductive isolation is an important process, generating biodiversity and driving speciation. To better understand this process, it is necessary to investigate factors underlying reproductive isolation through various approaches and in various taxa. Haplodiploid animals are expected to generate additional insight into speciation, but few studies investigated the prevalent view in haplodiploid animals. Mechanisms of reproductive isolation and its evolutionary factors have been investigated by genetic, theoretical, ecological, molecular and comparative approaches [1, 2]. These various approaches are important for understanding evolution of reproductive isolation, since various factors and mechanisms contribute to it. The differences may affect speciation process and evolution of reproductive isolation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.