Abstract

We report sub-diffraction limited patterning of Si substrate surfaces by laser-initiated liquid-assisted colloidal lithography. The technique involves exposing a two-dimensional lattice of transparent colloidal particles spin coated on the substrate of interest (here Si) immersed in a liquid (e.g. methanol, acetone, carbon tetrachloride, toluene) to a single picosecond pulse of ultraviolet laser radiation. Surface patterns formed using colloidal particles with different radii in the range 195 nm ≤ R ≤ 1.5 μm and liquids with differing indices of refraction (nliquid) are demonstrated, the detailed topographies of which are sensitively dependent upon whether the index of refraction of the colloidal particle (ncolloid) is greater or smaller than nliquid (i.e. upon whether the incident light converges or diverges upon interaction with the particle). The spatial intensity modulation formed by diffraction of the single laser pulse by the colloidal particles is imprinted into the Si substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.