Abstract

In this paper, we investigate the spatial pattern formation of a predator–prey system with prey-dependent functional response Ivlev-type and reaction-diffusion. The Hopf bifurcation of the model is discussed, and the sufficient conditions for the Turing instability with zero-flux boundary conditions are obtained. Based on this, we perform the spiral and the chaotic spiral patterns via numerical simulation, i.e., the evolution process of the system with the initial conditions which was small amplitude random perturbation around the steady state. For the sake of learning the pattern formation of the model further, we perform three categories of unsymmetric initial condition, and find that with these special initial conditions the system can emerge not only spiral pattern but also target pattern and so on, and the effect of these special conditions on the formation of spatial patterns is less and less with more and more iterations but the effect does not decay forever. This indicates that for prey-dependent type predator–prey system, pattern formations do depend on the initial conditions, while for predator-dependent type they do not.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.