Abstract

During microwave breakdown at atmospheric pressure, a sharp plasma front forms and propagates toward the microwave source at high velocities. Experiments show that the plasma front may exhibit a complex dynamical structure or pattern composed of plasma filaments aligned with the wave electric field and apparently moving toward the source. In this paper, we present a model of the pattern formation and propagation under conditions close to recent experiments. Maxwell’s equations are solved together with plasma fluid equations in two dimensions to describe the space and time evolution of the wave field and plasma density. The simulation results are in excellent agreement with the experimental observations. The model provides a physical interpretation of the pattern formation and dynamics in terms of ionization-diffusion and absorption-reflection mechanisms. The simulations allow a good qualitative and quantitative understanding of different features such as plasma front velocity, spacing between filaments, maximum plasma density in the filaments, and influence of the discharge parameters on the development of well-defined filamentary plasma arrays or more diffuse plasma fronts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.