On a two-dimensional circular domain, we analyze the formation of spatio-temporal patterns for a class of coupled bulk-surface reaction-diffusion models for which a passive diffusion process occurring in the interior bulk domain is linearly coupled to a nonlinear reaction-diffusion process on the domain boundary. For this coupled PDE system we construct a radially symmetric steady state solution and from a linearized stability analysis formulate criteria for which this base state can undergo either a Hopf bifurcation, a symmetry-breaking pitchfork (or Turing) bifurcation, or a codimension-two pitchfork-Hopf bifurcation. For each of these three types of bifurcations, a multiple time-scale asymptotic analysis is used to derive normal form amplitude equations characterizing the local branching behavior of spatio-temporal patterns in the weakly nonlinear regime. Among the novel aspects of this weakly nonlinear analysis are the two-dimensionality of the bulk domain, the systematic treatment of arbitrary reaction kinetics restricted to the boundary, the bifurcation parameters which arise in the boundary conditions, and the underlying spectral problem where both the differential operator and the boundary conditions involve the eigenvalue parameter. The normal form theory is illustrated for both Schnakenberg and Brusselator reaction kinetics, and the weakly nonlinear results are favorably compared with numerical bifurcation results and results from time-dependent PDE simulations of the coupled bulk-surface system. Overall, the results show the existence of either subcritical or supercritical Hopf and symmetry-breaking bifurcations, and mixed-mode oscillations characteristic of codimension-two bifurcations. Finally, the formation of global structures such as large amplitude rotating waves is briefly explored through PDE numerical simulations.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call