Abstract

Virtual reality offers the promise of highly interactive, natural control of the visualization process, greatly enhancing the scientific value of the data produced by medical imaging systems. Due to the computational and real time update requirements of virtual reality interfaces, however, the complexity of polygonal surfaces which can be displayed is limited. In this paper, we present a novel method for the production of a polygonal surface containing a pre-specified number of polygons from volumetric data. To preserve surface detail, we extract a set of curvature weights from the volumetric data and use these weights as the input vectors to a 2-D Kohonen network. The adaptation of the network to the input vectors results in a display surface that preserves useful detail relative to the number of polygons used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.