Abstract

Over the last thirty years, research in nanomedicine has widely been focused on applications in cancer therapeutics. However, despite the plethora of reported nanoscale drug delivery systems that can successfully eradicate solid tumor xenografts in vivo, many of these formulations have not yet achieved clinical translation. This issue particularly pertains to the delivery of small interfering RNA (siRNA), a highly attractive tool for selective gene targeting. One of the likely reasons behind the lack of translation is that current in vivo models fail to recapitulate critical elements of clinical solid tumors that may influence drug response, such as cellular heterogeneity in the tumor microenvironment. This study incorporates a more clinically relevant model for assessing siRNA delivery systems; ex vivo culture of prostate cancer harvested from patients who have undergone radical prostatectomy, denoted patient-derived explants (PDE). The model retains native human tissue architecture, microenvironment, and cell signaling pathways. Porous silicon nanoparticles (pSiNPs) behavior in this model is investigated and compared with commonly used 3D cancer cell spheroids for their efficacy in the delivery of siRNA directed against the androgen receptor (AR), a key driver of prostate cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.