Abstract

Immune-mediated necrotizing myopathies (IMNM) may be associated with either anti-signal recognition protein (SRP) or anti-3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) antibodies (Abs), and the titer of these Abs is correlated with disease activity. We investigated whether anti-SRP and anti-HMGCR Abs could be involved in muscle damage. Muscle biopsies of patients were analyzed for atrophy and regeneration by measuring fiber size and by performing immunostaining of neonatal myosin heavy chain. To further understand the role of the Abs in the pathology, we performed muscle cell coculture with the Abs. Atrophy and regeneration were evaluated based on the myotube surface area as well as gene and cytokine profiles. In muscle biopsies of patients with anti-SRP+ and anti-HMGCR+ Abs, a large number of small fibers corresponding to both atrophic and regenerating fibers were observed. In vitro, anti-SRP and anti-HMGCR Abs induced muscle fiber atrophy and increased the transcription of MAFbx and TRIM63. In addition, the muscle fiber atrophy was associated with high levels of inflammatory cytokines: tumor necrosis factor, interleukin (IL)-6, and reactive oxygen species. In the presence of anti-SRP or anti-HMGCR Abs, mechanisms involved in muscle regeneration were also impaired due to a defect of myoblast fusion. This defect was associated with a decreased production of IL-4 and IL-13. The addition of IL-4 and/or IL-13 totally rescued fusion capacity. These data show that molecular mechanisms of atrophy and regeneration are affected and contribute to loss of muscle function occurring in IMNM. This emphasizes the potential interest of targeted therapies addressing these mechanisms. Ann Neurol 2017;81:538-548.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.