Abstract

BackgroundLRRK2 mutations and risk variants increase susceptibility to inherited and idiopathic Parkinson’s disease, while recent studies have identified potential protective variants. This, and the fact that LRRK2 mutation carriers develop symptoms and brain pathology almost indistinguishable from idiopathic Parkinson’s disease, has led to enormous interest in this protein. LRRK2 has been implicated in a range of cellular events, but key among them is canonical Wnt signalling, which results in increased levels of transcriptionally active β-catenin. This pathway is critical for the development and survival of the midbrain dopaminergic neurones typically lost in Parkinson’s disease.MethodsHere we use Lrrk2 knockout mice and fibroblasts to investigate the effect of loss of Lrrk2 on canonical Wnt signalling in vitro and in vivo. Micro-computed tomography was used to study predicted tibial strength, while pulldown assays were employed to measure brain β-catenin levels. A combination of luciferase assays, immunofluorescence and co-immunoprecipitation were performed to measure canonical Wnt activity and investigate the relationship between LRRK2 and β-catenin. TOPflash assays are also used to study the effects of LRRK2 kinase inhibition and pathogenic and protective LRRK2 mutations on Wnt signalling. Data were tested by Analysis of Variance.ResultsLoss of Lrrk2 causes a dose-dependent increase in the levels of transcriptionally active β-catenin in the brain, and alters tibial bone architecture, decreasing the predicted risk of fracture. Lrrk2 knockout cells display increased TOPflash and Axin2 promoter activities, both basally and following Wnt activation. Consistently, over-expressed LRRK2 was found to bind β-catenin and repress TOPflash activation. Some pathogenic LRRK2 mutations and risk variants further suppressed TOPflash, whereas the protective R1398H variant increased Wnt signalling activity. LRRK2 kinase inhibitors affected canonical Wnt signalling differently due to off-targeting; however, specific LRRK2 inhibition reduced canonical Wnt signalling similarly to pathogenic mutations.ConclusionsLoss of LRRK2 causes increased canonical Wnt activity in vitro and in vivo. In agreement, over-expressed LRRK2 binds and represses β-catenin, suggesting LRRK2 may act as part of the β-catenin destruction complex. Since some pathogenic LRRK2 mutations enhance this effect while the protective R1398H variant relieves it, our data strengthen the notion that decreased canonical Wnt activity is central to Parkinson’s disease pathogenesis.

Highlights

  • leucine-rich repeat kinase 2 (LRRK2) mutations and risk variants increase susceptibility to inherited and idiopathic Parkinson’s disease, while recent studies have identified potential protective variants

  • Our previous data demonstrated that siRNA-mediated knockdown of LRRK1 or LRRK2 elicits increased Wnt signalling in HEK293 cells, and it is well established that elevated canonical Wnt signalling causes increased bone mass

  • We observed a differential effect of Lrrk2 deficiency on the cross sectional thickness (Ct.Th) parameter, with lower values obtained at a proximal region, but significantly higher values at two distal regions (Additional file 2: Figure S1B)

Read more

Summary

Introduction

LRRK2 mutations and risk variants increase susceptibility to inherited and idiopathic Parkinson’s disease, while recent studies have identified potential protective variants. LRRK2 has been implicated in a range of cellular events, but key among them is canonical Wnt signalling, which results in increased levels of transcriptionally active β-catenin. This pathway is critical for the development and survival of the midbrain dopaminergic neurones typically lost in Parkinson’s disease. LRRK2 contains two distinct enzymatic activities, namely serine/threonine kinase activity and GTPase activity, the latter conferred by a RocCOR (Ras of complex proteins; C-terminal of Roc) tandem domain The combination of these enzymatic activities suggests a function for LRRK2 in signal transduction [1, 2, 4,5,6]. A definitive, conserved cellular role for LRRK2 has yet to emerge, suggesting that it may serve distinct functions in different cell types [6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.