Abstract

There is a certain population of intractable asthma patients, who can not be controlled by corticosteroid therapy. It has been suggested that 5-10% of asthma patients have been suffered from steroid resistance. Since it has been difficult to develop a steroid-resistant asthma model, the detailed mechanisms have been unclear. Recently, an intractable asthma model showing steroid insensitivity was developed by the author and colleagues. We found that pathogenic changes in type 2 innate lymphoid cells (ILC2) were induced in the intractable asthma. When ovalbumin (OVA) + Al(OH)3-sensitized BALB/c mice were intratracheally challenged with OVA at 5 μg/animal, development of airway remodeling as well as lung eosinophilia and neutrophilia were markedly suppressed by treatment with dexamethasone. In contrast, when increasing the dose of OVA for challenges to 500 μg/animal, those asthmatic responses turned to be steroid insensitive. When Th2 cells and ILC2 in the lung were stimulated in vitro, ILC2 produced larger amounts of type 2 cytokines than Th2 cells. Interestingly, amounts of type 2 cytokines produced by the steroid-insensitive model-derived ILC2 were significantly larger than those by the steroid-sensitive, and that the former ILC2 exhibited higher expression of thymic stromal lymphopoietin (TSLP) receptor and signal transducer and activator of transcription (STAT) 5a gene. Treatment with anti-IL-5 antibody improved the steroid sensitivity. Taken together, ILC2 have been transformed to be pathogenic in the intractable asthma. IL-5 hyper-produced from ILC2 may be involved in the development of steroid resistance. The molecules related to the above mentioned are expected to be targets for development of new therapeutic drugs for intractable asthma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.