Abstract

The NAC (NAM, ATAF, and CUC) is one of the largest transcription factor gene families in plants. In this study, 180, 141, and 131 NAC family members were identified from Saccharum complex, including S. officinarum, S. spontaneum, and Erianthus rufipilus. The Ka/Ks ratio of ATAF subfamily was all less than 1. Besides, 52 ATAF members from 12 representative plants were divided into three clades and there was only a significant expansion in maize. Surprisingly, ABA and JA cis-elements were abundant in hormonal response factor, followed by transcriptional regulator and abiotic stressor. The ATAF subfamily was differentially expressed in various tissues, under low temperature and smut pathogen treatments. Further, the ScATAF1 gene, with high expression in leaves, stem epidermis, and buds, was isolated. The encoded protein, lack of self-activation activity, was situated in the cell nucleus. Moreover, SA and JA stresses down-regulated the expression of this gene, while ABA, NaCl, and 4°C treatments led to its up-regulation. Interestingly, its expression in the smut susceptible sugarcane cultivars was much higher than the smut resistant ones. Notably, the colors presented slight brown in tobacco transiently overexpressing ScATAF1 at 1 d after DAB staining, while the symptoms were more obvious at 3 d after inoculation with Ralstonia solanacearum, with ROS, JA, and SA signaling pathway genes significantly up-regulated. We thus speculated ScATAF1 gene could negatively mediate hypersensitive reactions and produce ROS by JA and SA signaling pathways. These findings lay the groundwork for in-depth investigation on the biological roles of ATAF subfamily in sugarcane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.