Abstract
SUMMARYThis paper presents a new configuration for ankle rehabilitation using a 9-DOF (degree of freedom) hybrid parallel robot. The robot contains nine linear actuators serially connecting two movable platforms and one stationary platform. The optimization is based on the singularity and dynamic analysis of the robot. The obtained data of the ankle motions from a series of experiments were applied to the model in order to investigate the motion of the end-effector and the force required for each actuator in a particular path. The end-effector tracking simulation results validated the proposed theoretical analysis of the required rehabilitation path of the foot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.