Abstract

Tensegrity-based locomotive robots have attracted more and more interests from multidisciplinary engineering community. To realize long distance locomotion for tensegrity robots in a given land, path planning is usually needed. This paper proposes a path planning approach for rolling locomotion of polyhedral tensegrity robots. Given the start vertex, target vertex and the directed graph G which indicates the possible paths, the optimal path with lowest cost can be found by Dijkstra algorithm. Numerical and experimental examples are carried out with a six-bar tensegrity robot prototype. Both motion distance and terrain characteristics are considered within the cost. The proposed approach is generally verified by the examples. A comparison between the numerical result and the experimental result is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.