Abstract

This paper deals with the optimal path placement for a manipulator based on energy consumption. It proposes a methodology to determine the optimal location of a given test path within the workspace of a manipulator with minimal electric energy used by the actuators while taking into account the geometric, kinematic and dynamic constraints. The proposed methodology is applied to the Orthoglide 3-axis, a three-degree-of-freedom translational parallel kinematic machine (PKM), as an illustrative example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.