Abstract
This paper proposes a hybrid approach of Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) for the mobile Radio Frequency Identification System (RFID) reader to get the shortest path for object localization. In this approach, we have adopted the ACO global pheromone updating information of ants to guide the update velocities and position for PSO based on nearest neighbor constraints. The pheromone information is used efficiently to guide the selection of each particle in a search space of its visits. The best path will be used for mobile RFID reader for objects localization in search space. Simulation results show that the method is effective, minimizing the number of visited nodes for a mobile RFID reader.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Zenodo (CERN European Organization for Nuclear Research)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.