Abstract
We develop path-conservative central-upwind schemes for nonconservative one-dimensional hyperbolic systems of nonlinear partial differential equations. Such systems arise in a variety of applications and the most challenging part of their numerical discretization is a robust treatment of nonconservative product terms. Godunov-type central-upwind schemes were developed as an efficient, highly accurate and robust ``black-box’’ solver for hyperbolic systems of conservation and balance laws. They were successfully applied to a large number of hyperbolic systems including several nonconservative ones. To overcome the difficulties related to the presence of nonconservative product terms, several special techniques were proposed. However, none of these techniques was sufficiently robust and thus the applicability of the original central-upwind schemes was rather limited. In this paper, we rewrite the central-upwind schemes in the form of path-conservative schemes. This helps us (i) to show that the main drawback of the original central-upwind approach was the fact that the jump of the nonconservative product terms across cell interfaces has never been taken into account and (ii) to understand how the nonconservative products should be discretized so that their influence on the numerical solution is accurately taken into account. The resulting path-conservative central-upwind scheme is a new robust tool for both conservative and nonconservative hyperbolic systems. We apply the new scheme to the Saint-Venant system with discontinuous bottom topography and two-layer shallow water system. Our numerical results illustrate the good performance of the new path-conservative central-upwind scheme, its robustness and ability to achieve very high resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Mathematical Modelling and Numerical Analysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.