Abstract

Ground segmentation is crucial for terrestrial mobile platforms to perform navigation or neighboring object recognition. Unfortunately, the ground is not flat, as it features steep slopes; bumpy roads; or objects, such as curbs, flower beds, and so forth. To tackle the problem, this letter presents a novel ground segmentation method called Patchwork, which is robust for addressing the under-segmentation problem and operates at more than 40 Hz. In this letter, a point cloud is encoded into a Concentric Zone Model-based representation to assign an appropriate density of cloud points among bins in a way that is not computationally complex. This is followed by Region-wise Ground Plane Fitting, which is performed to estimate the partial ground for each bin. Finally, Ground Likelihood Estimation is introduced to dramatically reduce false positives. As experimentally verified on SemanticKITTI and rough terrain datasets, our proposed method yields promising performance compared with the state-of-the-art methods, showing faster speed compared with existing plane fitting-based methods. Code is available: https://github.com/LimHyungTae/patchwork.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.