Abstract

Mathematical models have the potential to be useful to forecast the course of epidemics. In this chapter, a family of logistic patch models are preliminarily evaluated for use in disease modeling and forecasting. Here we also derive the logistic equation in an infectious disease transmission context based on population behavior and used it for forecasting the trajectories of the 2013–2015 Ebola epidemic in West Africa. The logistic model is then extended to include spatial population heterogeneity by using multi-patch models that incorporate migration between patches and logistic growth within each patch. Each model’s ability to forecast epidemic data was assessed by comparing model forecasting error, parameter distributions and parameter confidence intervals as functions of the number of data points used to calibrate the models. The patch models show an improvement over the logistic model in short-term forecasting, but naturally require the estimation of more parameters from limited data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.