Abstract

Deep learning techniques have demonstrated state-of-the-art performances in many medical imaging applications. These methods can efficiently learn specific patterns. An alternative approach to deep learning is patch-based grading methods, which aim to detect local similarities and differences between groups of subjects. This latter approach usually requires less training data compared to deep learning techniques. In this work, we propose two major contributions: first, we combine patch-based and deep learning methods. Second, we propose to extend the patch-based grading method to a new patch-based abnormality metric. Our method enables us to detect localized structural abnormalities in a test image by comparison to a template library consisting of images from a variety of healthy controls. We evaluate our method by comparing classification performance using different sets of features and models. Our experiments show that our novel patch-based abnormality metric increases deep learning performance from 91.3% to 95.8% of accuracy compared to standard deep learning approaches based on the MRI intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.