Abstract
Insights into the mechanism of attrition-enhanced deracemization and resolution of solid enantiomorphic chiral compounds are obtained by crystal size and solubility measurements and by isotopic labeling experiments. Together these results help to deconvolute the various chemical and physical rate processes contributing to the phenomenon. Crystal size measurements highlight a distinct correlation between the stochastic, transient growth of crystals and the emergence of a single solid enantiomorph under attrition conditions. The rapid mass transfer of molecules between the solution and solid phases under attrition is demonstrated, and the concept of a crystal-size-induced solubility driving force is exploited to overcome the stochastic nature of the crystal growth and dissolution processes. Extension to non-racemizing conditions provides a novel methodology for chiral resolution. Implications both for practical chiral separations and for the origin of biological homochirality are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.