Abstract

Bismuthene quantum dots (Bi-QDs) were synthesized via the liquid phase exfoliation (LPE) method for the passive Q-switching operation in near-infrared (NIR) region. The nonlinear optical properties of the prepared Bi-QDs were investigated by the open-aperture Z-scan technology. The modulation depths were 18.1% and 5.1% at 1.06 and 1.34 µm, respectively. Based on the Bi-QDs saturable absorber, passively Q-switched Nd:GdVO4 lasers operating at 4F3/2 → 2I11/2 and 4F3/2 → 2I13/2 transitions were demonstrated, showing the wideband optical modulation in NIR regime. For the 4F3/2 → 2I13/2 transition lasing at 1.34 µm, the shortest pulse duration of 155 ns was obtained with a repetition rate of 457 kHz. With respect to the 4F3/2 → 2I11/2 transition at 1.06 µm, the minimum pulse duration was 150 ns with a repetition rate of 424 kHz, leading to a single pulse energy of 261 nJ and a peak power of 1.68 W. In addition, the ground state absorption cross section and the excited state absorption cross section of Bi-QDs were also investigated for the first time. The impact of the excited state lifetime on the output parameters was numerically stimulated by the coupled rate equations. Our work confirmed that the trap state in Bi-QDs played an important role in the pulse generation mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.