Abstract

Although interfacial atmospheric water generation is a new concept that can generate freshwater from renewable energy, its water generation rate is too low for widespread use. This paper proposes to integrate the fuel cell to a similar device but instead uses the electrochemically generated waste heat to drive the regeneration process of the liquid sorbent material. Furthermore, the electrochemically generated water is used to increase the relative humidity of the incoming air. Thus, by solely relying on the fuel cell waste products, water recovery rates that are theoretically higher than direct atmospheric water generation are achieved. A steady-state physics model based on the difference in water partial pressure to achieve water absorption and desorption is used to analyze the liquid sorbent device’s performance. Furthermore, the effect of various design parameters such as the salt mass fraction, the fuel cell operating power, the ambient relative humidity, etc. have been studied. Results demonstrate that up to 1.8 kg/h and 0.82 kg/(m2 h) of liquid water can be obtained by fuel cells with an operating temperature range that is consistent with the high-temperature proton exchange membrane fuel cell. This implementation would allow an FC waste heat utilization ratio of up to 0.8.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.