Abstract

The passivation cracking of Micro-structures of IC packages is studied by maximum principal stress theory using a certain 2D FEM model with different design parameters, pitch of lines, width of line, thickness of epoxy, thickness of dielectric layer, thickness of glue, the glue material’s yielding stress and Aluminium yielding stress (following as “d”, “w”, “t_epo”, “t_Teos”, “t_glue” “sy_glue” and “sy_al” respectively). For different critical process steps, the final process temperature is acted as a representative parameter to analyze its impact. Furthermore, Response Surface Model (RSM) of principal stress is established using any two design parameters. Results show that “d”, “w”, “t_epo”, “sy_glue” and “sy_al” will have great influence on passivation cracking while “t_Teos” have a little impact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.