Abstract

Passivating antireflection coating of crystalline silicon has been experimentally studied using a three-layered stack, consisting of an i/n a-Si:H/SiN trilayer. The passivation property is characterized by the minority carrier lifetime, which shows ≳ 1 ms for the i/n a-Si:H/SiN trilayer prepared at a temperature as low as 250 ∘C. The antireflection property is confirmed by a reflection of light of ≲ 2.0% at 550 nm and a low reflection in a wide range of visible and near-infrared regions, which is adequate for solar cell application, particularly in back-contact structure. The roles of each layer are discussed in terms of the chemical and field-effect passivation as well as the antireflection property. The optoelectronic properties of a neat SiN layer are also discussed to achieve a stable and reliable antireflection performance under the low-temperature growth conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.