Abstract

Mutualistic interactions are widespread and obligatory for many organisms, yet their evolutionary persistence in the face of cheating is theoretically puzzling. Nutrient-acquisition symbioses between plants and soil microbes are critically important to plant evolution and ecosystem function, yet we know almost nothing about the evolutionary dynamics and mechanisms of persistence of these ancient mutualisms. Partner-choice and partner-fidelity are mechanisms for dealing with cheaters, and can theoretically allow mutualisms to persist despite cheaters.Many models of cooperative behavior assume pairwise interactions, while most plant-microbe nutrient-acquisition symbioses involve a single plant interacting with numerous microbes. Market models, in contrast, are well suited to mutualisms in which single plants attempt to conduct mutually beneficial resource exchange with multiple individuals. Market models assume that one partner chooses to trade with a subset of individuals selected from a market of potential partners. Hence, determining whether partner-choice occurs in plant-microbe mutualisms is critical to understanding the evolutionary persistence and dynamics of these symbioses. The nitrogen-fixation/carbon-fixation mutualism between leguminous plants and rhizobial bacteria is widespread, ancient, and important for ecosystem function and human nutrition. It also involves single plants interacting simultaneously with several to many bacterial partners, including ineffective ("cheating") strains. We review the existing literature and find that this mutualism displays several elements of partner-choice, and may match the requirements of the market paradigm. We conclude by identifying profitable questions for future research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.