Abstract

Relaxor ferroelectric (RFE) films are promising energy-storage candidates for miniaturizing high-power electronic systems, which is credited to their high energy density (Ue) and efficiency. However, advancing their Ue beyond 200 joules per cubic centimeter is challenging, limiting their potential for next-generation energy-storage devices. We implemented a partitioning polar-slush strategy in RFEs to push the boundary of Ue. Guided by phase-field simulations, we designed and fabricated high-performance Bi(Mg0.5Ti0.5)O3-SrTiO3-based RFE films with isolated slush-like polar clusters, which were realized through suppression of the nonpolar cubic matrix and introduction of highly insulating networks. The simultaneous enhancement of the reversible polarization and breakdown strength leads to a Ue of 202 joules per cubic centimeter with a high efficiency of ~79%. The proposed strategy provides a design freedom for next-generation high-performance dielectrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.