Abstract
There is an abundance of published trace element data for sphalerite, galena and chalcopyrite in natural systems, yet for a co-crystallized assemblage comprising these base metal sulphides, there is no detailed understanding of the preferred host of many trace elements. Laser-ablation inductively-coupled plasma mass spectrometry trace element maps and spot analyses were generated on 17 assemblages containing co-crystallized sphalerite and/or galena and/or chalcopyrite from 9 different ore deposits. These deposits are representative of different ore types, geologic environments and physiochemical conditions of ore formation, as well as superimposed syn-metamorphic remobilisation and recrystallization. The primary factors that control the preferred base metal sulphide host of Mn, Fe, Co, Cu, Zn, Ga, As, Se, Ag, Cd, In, Sb, Te, Tl and Bi are element oxidation state, ionic radius of the substituting element, element availability and the maximum trace element budget that a given sulphide mineral can accommodate. Temperature, pressure, redox conditions at time of crystallization and metal source, do not generally appear to influence the preferred base metal sulphide host of all the trace elements. Exceptions are Ga, In and Sn recrystallized at high metamorphic grades, when the preferred host of Ga and Sn usually becomes chalcopyrite. In more typical lower temperature ores, the preferred host of Ga is sphalerite. Indium concentrations also increase in chalcopyrite during recrystallization. At lower temperatures the partitioning behaviour of Sn remains poorly constrained and shows little predictable pattern among the data here. The results obtained may be used as a tool to assess co-crystallization. If trace element distributions in a given base metal sulphide assemblage match those reported here, and assuming those distributions have not been significantly altered post (re-) crystallization, then it may be suggestive of a co-crystallized assemblage. Such information provides a foundation for novel attempts to develop trace element-in-sulphide geothermometers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.