Abstract

The partitioning of a number of trace elements (Ba, Nb, Zr, Y, REE, etc.) between orthopyroxene, garnet, and carbonate-silicate melt was experimentally studied using a belt apparatus at pressures of 3.5–4.2 GPa and temperatures of 1300–1500°C. The experimental products were investigated by electron microprobe analysis and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The experimental melts varied from carbonatitic (∼5 wt % SiO2) at low temperatures (1300–1350°C) to kimberlitic compositions (30 wt % SiO2) at high temperatures (1500°C). The partition coefficients of most elements between orthopyroxene and melt (DiOpx/L) and garnet and melt (DiGrt/L) were almost independent of melt composition (temperature). The DiOpx/L values ranged from <0.01 for the most incompatible Ba and light REE to 0.02–0.08 for moderately incompatible Zr, Y, and heavy REE. The DiGrt/L values were approximately an order of magnitude higher, ∼0.07 for light REE, 0.7 for Y, and 1.5 for Yb. The character of DiGrt/L variations in the systems studied is in general similar to that established for silicate melts without volatile components. However, the differences in the behavior of moderately incompatible and compatible elements (e.g., light and heavy REE) in the experimental systems are less pronounced compared with CO2-free systems. Considering carbonate-silicate and silicate melts as possible agents of mantle metasomatism, it can be concluded that the former can efficiently transport heavy REE, and the latter have a greater affinity for Nb, Ba, and light REE. A characteristic feature of mantle rocks enriched by carbonate-silicate melts is high Ba/La ratio coupled with relatively weakly fractionated REE distribution patterns. It was shown that the high degrees of enrichment observed in natural kimberlites can be explained by a two-stage scenario, including a preliminary invasion of carbonate-silicate melt into depleted harzburgites in the lower parts of the lithosphere and subsequent very low degree melting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.