Abstract

Abstract— We report the results of dynamic crystallization experiments that were specifically designed to study the dependence of Ca and Al partitioning between forsterite and melt in rapidly cooling Caand Al‐rich melts. The partitioning of Ca between olivine and silicate melt is found to be independent of the cooling rate within the range of 1.5 to 1000°C/hr and at CaO contents of up to 25 wt%. Within analytical uncertainty, our data plot on the equilibrium partitioning curve obtained by Libourel (1999). The partitioning behavior of Al at high cooling rates is more complex. Aluminum is much more heterogenously distributed in the olivine and the co‐existing melt than Ca. But, no systematic trend of Al partition coefficient with cooling rate is observed. We apply the results of the experiments to the formation of meteoritic forsterites with relatively high contents of Ca and Al. Although these forsterites are found frequently inside chondrules, the Ca contents of their host chondrules are far too low to crystallize these high Ca‐forsterites. This is also true for very rapid cooling of chondrule melts. The parental melt of these forsterites requires CaO contents above 20 wt%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.