Abstract

In distributed-memory multicomputers, minimizing interprocessor communication is the key to the efficient execution of parallel programs. In order to reduce the amount of communication overhead, parallel programs on multicomputers must be carefully scheduled by parallelizing compilers. This paper proposes some compilation techniques for partitioning and mapping nested loops with constant data dependences onto linear array multicomputers. First, a systematic partition strategy is proposed to project ann-dimensional computational structure, representing ann-nested loop, onto a line to form a one-dimensional projected structure with low communication overhead. Then, a mapping algorithm is proposed for mapping the partitioned loops onto linear arrays in a way that balances the workload and minimizes the communication cost among processors. Finally, parallel execution codes can be automatically generated for such linear array multicomputers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.