Abstract

Partitions of the electronic energy such as that provided by the Interacting Quantum Atoms (IQA) approach have given valuable insights for numerous chemical systems and processes. Unfortunately, this kind of analysis may involve the integration of scalar fields over very irregular volumes, a condition which leads to a large and often prohibitive computational effort. These circumstances have limited the use of these energy partitions to systems comprising a few tens of atoms at most. On the other hand, semiempirical methods have proved useful in the study of systems of several thousands of atoms. Therefore, the goal of this work is to carry out partitions of the semiempirical method PM7 in compliance with the IQA approach. For this purpose, we computed one- and two-atomic energetic contributions whose sum equals the PM7 electronic energy. We illustrate how one might exploit the partition of electronic energies computed via the PM7 method by considering small organic and inorganic molecules and the energetics of individual hydrogen bond interactions within several water clusters which include (H2O)30, (H2O)50 and (H2O)100. We also considered the solvation of the amphiphilic caprylate anion to exemplify how to exploit the energy partition proposed in this paper. Overall, this investigation shows how the approach put forward herein might give further insights of the interactions occurring within complex systems in physical and biological chemistry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call