Abstract

The Lee–Yang theory of adsorbing self-avoiding walks is presented. It is shown that Lee–Yang zeros of the generating function of this model asymptotically accumulate uniformly on a circle in the complex plane, and that Fisher zeros of the partition function distribute in the complex plane such that a positive fraction are located in annular regions centred at the origin. These results are examined in a numerical study of adsorbing self-avoiding walks in the square and cubic lattices. The numerical data are consistent with the rigorous results; for example, Lee–Yang zeros are found to accumulate on a circle in the complex plane and a positive fraction of partition function zeros appear to accumulate on a critical circle. The radial and angular distributions of partition function zeros are also examined and it is found to be consistent with the rigorous results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.