Abstract

Peptidoglycan (PG) is a biopolymer found exclusively in the cell wall of bacteria. Recent chemical analysis of particulate organic matter suggests that a major amount of the muramic acid, an amino sugar present only in PG, could not be accounted for in terms of bacterial cells (Benner and Kaiser, 2003); however, data on particulate PG is quite sparse. In the present study, conducted in 1996, the PG was examined at 5 sampling sites in the northwestern Pacific Ocean, and in natural seawater cultures. Particulate PG, which was concentrated using a 96-well filtration plate equipped with Durapore filters (pore size, 0.22 μm), was measured by the silkworm larvae plasma (SLP) assay. The PG concentration generally decreased with depth and correlated significantly with bacterial abundance throughout the entire water column. However, the ratio of particulate PG to bacterial abundance varied with depth. The average ratio was 0.61 ± 0.53 (average ± SD, n = 40) between 50 and 2000 m, which agreed with the bacterial cellular PG content from 0.63 to 1.1 fg cell−1 obtained in seawater cultures. On the other hand, the ratios of PG to bacteria from the surface to 50 m (3.7 ± 2.6, n = 29) and below 2,000 m (2.1 ± 1.7, n = 7) were significantly higher than that between 50 and 2,000 m. These results may suggest that, in the surface and deep layers, a significant fraction of particulate PG was present in bacterial detritus, whereas this fraction was reduced in the middle layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.