Abstract

Biosolids contain metal, synthetic organic compound, endotoxin, and pathogen concentrations that are greater than concentrations in the agricultural soils to which they are applied. Once applied, biosolids are incorporated into soils by disking and the aerosols produced during this process may pose an airborne toxicological and infectious health hazard to biosolids workers and nearby residents. Field studies at a Central Arizona biosolids land application site were conducted to characterize the physical, chemical, and biological content of the aerosols produced during biosolids disking and the content of bulk biosolids and soils from which the aerosols emanate. Arrayed samplers were used to estimate the vertical source aerosol concentration profile to enable plume height and associated source emission rate calculations. Source aerosol concentrations and calculated emission rates reveal that disking is a substantial source of biosolids-derived aerosols. The biosolids emission rate during disking ranged from 9.91 to 27.25 mg s −1 and was greater than previously measured emission rates produced during the spreading of dewatered biosolids or the spraying of liquid biosolids. Adding biosolids to dry soils increased the moisture content and reduced the total PM 10 emissions produced during disking by at least three times. The combination of bulk biosolids and aerosol measurements along with PM 10 concentrations provides a framework for estimating aerosol concentrations and emission rates by reconstruction. This framework serves to eliminate the difficulty and inherent limitations associated with monitoring low aerosol concentrations of toxic compounds and pathogens, and can promote an increased understanding of the associated biosolids aerosol health risks to workers and nearby residents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.