Abstract

Upconversion nanoparticles (UCNPs) are attractive candidates for energy transfer-based analytical applications. In contrast to classical donor-acceptor pairs, these particles contain many emitting lanthanide ions together with numerous acceptor dye molecules at different distances to each other, strongly depending on the particle diameter. UCNPs with precisely controlled sizes between 10 and 43 nm were prepared and functionalized with rose bengal and sulforhodamine B by a ligand-exchange procedure. Time-resolved studies of the upconversion luminescence of the UCNP donor revealed a considerable shortening of the donor lifetime as a clear hint for Förster resonance energy transfer (FRET). FRET was most pronounced for 21 nm-sized UCNPs, yielding a FRET efficiency of 60%. At larger surface-to-volume ratios, the FRET efficiency decreased by an increasing competition of nonradiative surface deactivation. Such dye-UCNP architectures can also provide an elegant way to shift the UCNP emission color, since the fluorescence intensity of the organic dyes excited by FRET was comparable to that of the upconversion emission of smaller particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.