Abstract

Pickering emulsions are emulsions whose drops are stabilized against coalescence by particles adsorbed at their interface. Recent research on oil/water/particle systems shows that particles can sometimes adsorb at two oil/water interfaces. Such “bridging particles” can glue together drops of oil in water or vice versa. We hypothesize that the same effect should apply in immiscible polymer blends with droplet-matrix morphologies, viz., added particles should glue together drops and give rise to particle-bridged drop clusters. We test this hypothesis in PIB-in-PDMS blends [PIB, poly(isobutylene); PDMS, poly(dimethylsiloxane)] with fumed silica particles. Direct visualization shows that the particles can indeed induce clustering of the drops, and the blends appear to show gel-like behavior. Such gel-like behavior is confirmed by dynamic oscillatory experiments. However, we are unable to conclusively attribute the gel-like behavior to droplet clustering: Association of the fumed silica particles in the bulk, which itself causes gel-like behavior, confounds the results and prevents clear analysis of the gluing effect of the particles. We conclude that PIB/PDMS/fumed silica is not a good model system, for studying particle-containing polymer blends. We instead propose that spherical monodisperse silica particles can offer a far more convenient model system, and provide direct visual evidence of gluing of PIB drops in a PDMS matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.